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Abstract. The susceptibility of the Ising S = 1 model with biquadratic interactions is 
expanded in a high temperature series on the FCC lattice for a range of the biquadratic 
interaction parameter that includes the Potts model. A tricritical point and a point 
above which the magnetization Mremains zero are approximately located. The Potts 
model seems to fall in the region of the first-order phase transition in M .  

The nature of the phase transition of the Potts model has been under discussion 
recently. Mean field theory predicts a first-order phase transition as does the work of 
Golner (1973) in three dimensions using the Wilson approximate recursion formula. 
The latter calculation imposes 7 = 0 which could be inapplicable to this model. 
Straley and Fisher (1973) find a second-order phase transition for the two-dimensional 
case. 

The Potts model is a three-component model (Potts 1952) where the energy of 
interacting nearest neighbours on the lattice is eo when they are of the same species, 
and cl when they belong to different species. 

An Ising spin 1 model with biquadratic interactions has been investigated by mean 
field theory by Rys (1969), Oran (1972), Chen and Levy (1973) and Blume and Hsieh 
(1969). This model has the following hamiltonian: 

A? = -J c SziSz,-JQ c (&?-W, ,”-#>-hC Szi-6C ( S a ? - @ .  
( i j )  <t l )  i 1 

(1) 
The Potts model can be represented by the following hamiltonian: 

where the three species are S, = 1, 0, - 1 so (1) in zero fields h = 5 = 0 withjQ = 3J 
is the Potts hamiltonian. 

The order parameters are M = &Szi and Q = C,(Sz,2-g). Oran (1972) and 
Chen and Levy (1973) find that MFT predicts a second-order phase transition for 
0 < JQ/J < #, a first-order phase transition for Q < JQ/J < 3 for both M and Q 
making JQ = QJ a tricritical point, and for JQ/J > 3 M = 0 and Q has a first-order 
phase transition. Clearly these points of changes will vary with dimensionality. If 
we may assume that MFT gives the results for d = 4, Fisher and Straley’s result puts 
the tricritical point in d = 2 at JQ/J > 3. In d = 3 we may expect the tricritical point 
to be between the values for d = 2 and d = 4 and its location will determine if the 
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Potts model with JQ = 3J has a second- or first-order transition. This we attempt to 
do here. 

High temperature series expansions were calculated for the initial magnetic suscep- 
tibility with the hamiltonian (3) using methods explained by Oitmaa (1971): 

The susceptibility is expressed as 
m 

kTX = T + 2 Ms,d(T)XSyd 

s + d # O  
s , d = O  

where Ms,d(') are polynomials in T (see appendix) and 

X = exp(JQ/kT)sinh(J/kT) 
Y = exp(JQ/kT)cosh(J/kT) - 1 
T = 2 exp(p/kT)/[2exp(p/kT) + 11. 

For the model in equation (1) p = -&JQ where q is the coordination number. For a 
series of fixed values of JQ/J we obtained x as a series in K = JjkT and analysed it by 
standard techniques. As the ratio JQ/J increases we see the critical temperature as 
estimated from the series first rises gradually then drops gradually and then drops very 
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Figure 1. Plot of y and kT,/J against JQ/J .  The curve with the minimum is y.  

quickly to zero. The last rapid drop we identify with the magnetization remaining 
identically zero at all temperatures and only Q ordering. The point at which the 
critical temperature turns from increasing to decreasing with increased biquadratic 
interaction indicating an onset of instability we identify as the tricritical point with 
some hesitation. 

There are two arguments for this identification. Firstly, the tricritical point in 
MFT is also the turning point for To from constant to decreasing. Secondly, the value 
we estimate for y in a region near that point is very close to 1, and y = 1 is what one 
would expect to find near a tricritical point. But this applies to  1.5 < JQ/J < 3.2. 
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Our estimates are that the tricritical point is at JQ/J  = 2.63 -toe05 and for JQ/J 
greater than 3.8 -t 0.2 the magnetization M remains zero at all temperatures. Constant 
y over -2 < JQ/J < 1 is consistent with our results. 

Work on the other susceptibility, namely x' = a21n2/P5 is in progress. Calcula- 
tions of the Iow- and high-temperature series for the free energy which will enable us 
to locate the tricritical point more accurately and to obtain the full phase diagrams are 
also under way. 

One of the authors (JO) acknowledges support by the Australian Research Grants 
Committee and wishes to thank Dr Franz Rys for helpful discussions. 

The other author (RD) wishes to thank Drs E Stanley and E Montroll for their 
support, and Dr M Blume for a helpful suggestion. 

Appendix 

M1.o = 127' 
M ~ , ~  = 12T2-1273 
M2,o = 1 3 2 ~ ~  
M1,i = 264r3-276r4 
Mc,,2 = 1 9 8 ~ ~  - 4 7 4 ~ ~  + 2767' 
M3.0 = 24r3+ 1 3 8 0 ~ ~  
M2,i = 48r3+4128r4-444Or5 
M1,2 = 48r3 + 5 5 3 2 ~ ~  - 133207' + 77527' 
Mo.3 = 24r3+3664r4 - 14788r5+ 18852~'- 7 7 5 2 ~ ~  
M4.0 = 612r4+ 1 4 0 4 0 ~ ~  
M3.1 = 2 1 8 4 ~ ~  + 542407' - 606367' 
M2,2 = 2664r4+ 1026967' -2521927' + 1 4 7 2 2 8 ~ ~  
M1.3 = 2 1 8 4 ~ ~  + 1 1 4 8 8 8 ~ ~  -4657447' + 588912~~  -240252~~  
M o , ~  = 1 0 9 2 ~ ~  +70713r5 -421 113~'+ 864606~~  - 755550~~  f240252~' 
M5.o = 7 2 ~ ~  + 1 0 4 8 8 8 ~ ~  + 1405567' 
M4,1 = 4 3 2 ~ ~  + 510247' + 6487687' - 758832~~  
M3.2 = 7 2 0 ~ ~  + 977767' + 14992927' - 3898440~~ +2309076r8 
M2.3 = 5 7 6 ~ ~  +96480~' +2325696~' -9737928~~ + 12326976~~ - 50123287' 
 MI,^ = 360r4+ 732007' f2349120~' - 14233800~~ +28977420r8 -25061640~' 

+ 78953527" 
M0.5 = 144r4+36456r5+ 1372872~'- 11373132~~ +33145596~~-45737412~' 

+ 30450828~'~ - 7895352~'~ 
M6,o = 31567'+ 1497127'f 13934647 
M5.1 = 24r4 + 186247' + 9049207' + 7322640~~ - 9001788~~ 
M4,2 = 724+45636~5+2315556~6+ 19109868~~-53910756~~+32586144~' 
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M3.3 = 8 0 ~ ~ + 5 6 0 5 6 ~ ~  +3335856@+34725784~~ - 161531608P f208923840~' 
- 85524048~~' 

M2.4 = 48r4 $ 3 9 8 1 6 ~ ~  +2951088~~ +49217424~'-316791492~* + 6479860567' 
- 5583972247'' + 174994944~~' 

M1,5 = 247*+23616r5 +215532076+46645512~7 -402298836~~ + 11665613527' 
- 1593317496~"+ 1049969664" -269739168~" 

M o , ~  = 8~~ + 9 8 3 2 ~ ~  + 1067820~~ +26132222? -295409106~~ + 114312023879 
-2202685594~~'+2290236772~~~ - 123221 1360P +269739168d3 
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